Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.702
1.
PLoS One ; 19(5): e0302015, 2024.
Article En | MEDLINE | ID: mdl-38728332

Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1ß, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.


Indomethacin , MAP Kinase Signaling System , Oxidative Stress , Plant Extracts , Stomach Ulcer , Tamaricaceae , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Animals , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Indomethacin/adverse effects , Indomethacin/toxicity , Rats , Tamaricaceae/chemistry , MAP Kinase Signaling System/drug effects , Male , Plant Leaves/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Rats, Sprague-Dawley , Network Pharmacology , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
2.
J Physiol Pharmacol ; 75(1)2024 02.
Article En | MEDLINE | ID: mdl-38583442

Using duodenocolic fistula in rats, this study attempts to highlight the particular cytoprotection aspects of the healing of fistulas and therapy potential of the stable gastric pentadecapeptide BPC 157, a cytoprotection mediator (i.e. upgrading minor vessels to induce healing at both fistula's sides). Upon duodenocolic fistula creation (two 'perforated' lesions put together) (assessed at 3, 6, 9, 12, and 15 min), BPC 157, given locally at the fistula, or intragastrically (10 µg/kg, 10 ng/kg), rapidly induces vessel 'recruitment', 'running' toward the defect, simultaneously at duodenum and colon, providing numerous collaterals and branching. The mRNA expression studies done at that time provided strongly elevated (nitric oxide synthase 2) and decreased (cyclooxygenase-2, vascular endothelial growth factor A, nitric oxide synthase (NOS)-1, NOS-3, nuclear factor-kappa-B-activating protein) gene expression. As therapy, rats with duodenocolic fistulas, received BPC 157 10 µg/kg, 10 ng/kg, per-orally, in drinking water till sacrifice, or alternatively, intraperitoneally, first application at 30 min after surgery, last at 24 h before sacrifice, at day 1, 3, 7, 14, 21, and 28. Controls exhibited both defects persisting, continuous fistula leakage, diarrhea, continuous weight loss, advanced adhesion formation and intestinal obstruction. Contrary, all BPC 157-treated rats have closed both defects, duodenal and colonic, no fistula leakage (finally, maximal instilled volume corresponds to healthy rats), no cachexia, the same weight as before surgery, no diarrhea, markedly less adhesion formation and intestinal passage obstruction. Thus, BPC 157 regimens resolve the duodenal/colon lesions and duodenocolic fistulas in rats, and rapid vessels recovery appears as the essential point in the implementation of the cytoprotection concept in the fistula therapy.


Anti-Ulcer Agents , Fistula , Proteins , Rats , Animals , Rats, Wistar , Vascular Endothelial Growth Factor A , Cytoprotection , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Nitric Oxide Synthase , Anti-Ulcer Agents/pharmacology
3.
J Ethnopharmacol ; 327: 117970, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38428660

ETHNOPHARMACOLOGICAL RELEVANCE: Solenostemma argel is widely distributed in Africa & Asia with traditional usage in alleviating abdominal colic, aches, & cramps. This plant is rich in phytochemicals, which must be explored for its pharmacological effects. PURPOSE: Peptic Ulcer Disease (PUD) is the digestion of the digestive tube. PUD not only interferes with food digestion & nutrient absorption, damages one of the largest defensive barriers against pathogenic micro-organisms, but also impedes drug absorption & bioavailability, rendering the oral route, the most convenient way, ineffective. Omeprazole, one of the indispensable cost-effective proton-pump inhibitors (PPIs) extensively prescribed to control PUD, is showing growing apprehensions toward multiple drug interactions & side effects. Hence, finding a natural alternative with Omeprazole-like activity & limited side effects is a medical concern. STUDY DESIGN: Therefore, we present Stemmoside C as a new gastroprotective phytochemical agent isolated from Solenostemma argel to be tested in upgrading doses against ethanol-induced gastric ulcers in mice compared to negative, positive, & reference Omeprazole groups. METHODS: We carried out in-depth pharmacological & histopathological studies to determine the possible mechanistic pathway. RESULTS: Our results showed that Stemmoside C protected the stomach against ethanol-induced gastric ulcers parallel to Omeprazole. Furthermore, the mechanistic studies revealed that Stemmoside C produced its effect using an orchestrated array of different mechanisms. Stemmoside C stimulates stomach defense by increasing COX-2, PGE-2, NO, & TFF-1 healing factors, IL-10 anti-inflammatory cytokine, & Nrf-2 & HO-1 anti-oxidant pathways. It also suppresses stomach ulceration by inhibiting leucocyte recruitment, especially neutrophils, leading to subsequent inhibition of NF-κBp65, TNF-α, IL-1ß, & iNOS pro-inflammatory cytokines & JAK-1/STAT-3 inflammation-induced carcinogenicity cascade in addition to MMP-9 responsible for tissue degradation. CONCLUSION: These findings cast light on Stemmoside C's clinical application against gastric ulcer progression, recurrence, & tumorigenicity & concurrently with chemotherapy.


Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Omeprazole/pharmacology , Omeprazole/therapeutic use , Ethanol/pharmacology , Cytokines/metabolism , Gastric Mucosa
4.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Article En | MEDLINE | ID: mdl-38307355

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Alpinia , Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ethanol/toxicity , Kaempferols/pharmacology , Kaempferols/therapeutic use , Rhizome/metabolism , Ulcer/drug therapy , Luteolin/pharmacology , Histamine/metabolism , Gastric Mucosa , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism
5.
Drug Des Devel Ther ; 18: 193-213, 2024.
Article En | MEDLINE | ID: mdl-38318501

Ulcer disorders including the oral mucosa, large intestine, and stomach mucosa, cause significant global health burdens. Conventional treatments such as non-steroid anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), histamine H2 receptor antagonists (H2RAs), and cytoprotective agents have drawbacks like mucosal injury, diminish gastric acid secretion, and interact with concurrent medications. Therefore, alternative therapeutic approaches are needed to tackle this health concern. Plants are rich in active metabolites in the bark, roots, leaves, fruits, and seeds, and have been utilized for medicinal purposes since ancient times. The use of herbal therapy is crucial, and regulations are necessary to ensure the quality of products, particularly in randomized studies, to assess their efficacy and safety in treating ulcer disorders. This study aims to explore the anti-ulcer activity of medicinal plants in treating peptic ulcer disease, ulcerative colitis, and aphthous ulcers. Articles were searched in Scopus and PubMed, and filtered for publication from 2013 to 2023, resulting in a total of 460 from Scopus and 239 from PubMed. The articles were further screened by title and abstract and resulted in 55 articles. Natural products, rich in active metabolites, were described to manage ulcer disease by protecting the mucosa, reducing ulcer effects, inhibiting pro-inflammatory factors, and reducing bacterial load, thus improving patients' quality of life. Natural extracts have proven effective in managing other health problems, including ulcers by reducing pain and decreasing lesions. This review provides an overview of preclinical and clinical studies on medicinal plants, focusing on their effectiveness in treating conditions like peptic ulcers, ulcerative colitis, and aphthous ulcers.


Anti-Ulcer Agents , Colitis, Ulcerative , Peptic Ulcer , Stomatitis, Aphthous , Humans , Ulcer , Colitis, Ulcerative/drug therapy , Stomatitis, Aphthous/drug therapy , Quality of Life , Peptic Ulcer/drug therapy , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Histamine H2 Antagonists , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
6.
PLoS One ; 19(1): e0287569, 2024.
Article En | MEDLINE | ID: mdl-38271407

The objectives of the present study were to evaluate the acute toxicity, gastroprotective, therapeutic, anti-inflammatory and anti H. pylori activities of T. vulgaris total plant extract against ethanol-induced gastric ulcers in Sprague Dawley rats. Animals were divided into five groups i.e G-1 (Normal Control), Group 2 (ulcer control) were administered orally with 0.5% Carboxymethylcellulose (CMC), Group 3 (omeprazole treated) was administered orally with 20 mg/kg of omeprazole and Groups 4 and 5 (Low dose and High dose of the extract) were administered orally with 250, and 500 mg/ kg of Thymus vulgaris extract, respectively. After 1 hour, the normal group was orally administered with 0.5% CMC (5 ml/kg), whereas absolute alcohol (5ml/ kg) was orally administered to the ulcer control group, omeprazole group, and experimental groups. Stomachs were examined macroscopically and microscopically. Grossly, rats pre-treated with T. vulgaris demonstrated significantly decreased ulcer area and an increase in mucus secretion and pH of gastric content compared with the ulcer control group. Microscopy of gastric mucosa in the ulcer control group showed severe damage to gastric mucosa with edema and leukocytes infiltration of the submucosal layer. However, rats pretreated with omeprazole or Thyme vulgaris exhibited a mild to moderate disruption of the surface epithelium and lower level of edema and leukocyte infiltration of the submucosal layer. The T. vulgaris extract caused up-regulation of Hsp70 protein, down-regulation of Bax protein, and intense periodic acid Schiff uptake of the glandular portion of the stomach. Gastric mucosal homogenate of rats pre-treated with T. vulgaris exhibited significantly increased superoxide dismutase (SOD) and catalase (CAT) activities while malondialdehyde (MDA) level was significantly decreased. Based on the results showed in this study, Thymus vulgaris extract can be proposed as the safe medicinal plants for use and it has considerable gastroprotective potential via stomach epithelium protection against gastric ulcers and stomach lesions.


Anti-Ulcer Agents , Stomach Ulcer , Thymus Plant , Rats , Animals , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ulcer/drug therapy , Ethanol/toxicity , Ethanol/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gastric Mucosa/metabolism , Omeprazole/adverse effects , Antioxidants/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Edema/drug therapy
7.
J Sci Food Agric ; 104(3): 1723-1731, 2024 Feb.
Article En | MEDLINE | ID: mdl-37851602

BACKGROUND: In the present work, acute gastric ulcer models were constructed by administering hydrochloric acid/ethanol. The mice ingested white jade snail secretion (WJSS) through gastric infusion. Ulcer areas in gastric tissue were recorded, and malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Notably, high-throughput 16S rDNA analysis of intestinal flora and determination of amino acid composition in feces were performed to understand the effect of WJSS on model mice. RESULTS: Compared with the control group, the ulcer area in the WJSS low-, medium- and high-concentration groups declined by 28.02%, 39.57% and 77.85%, respectively. MDA content decreased by 24.71%, 49.58% and 64.25%, and SOD relative enzyme activity fell by 28.19%, 43.37% and 9.60%, respectively. The amounts of amino acids in the low-, medium- and high-concentration groups were slightly lower, and probiotic bacteria such as Bacteroidetes and Lactobacillales increased in different-concentration WJSS groups. Adding WJSS contributes to the establishment of beneficial intestinal flora and the absorption of amino acids. CONCLUSION: Our results showed that WJSS has a beneficial effect on inhibiting hydrochloric acid-ethanolic gastric ulcers, suggesting that WJSS has excellent potential as a novel anti-ulcer agent. Combined with ulcer area, MDA content, SOD content, gut probiotics and other indicators, a high concentration of WJSS had the best protective effect on acute gastric ulcer. © 2023 Society of Chemical Industry.


Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Antioxidants/metabolism , Hydrochloric Acid , Ulcer/drug therapy , Ulcer/metabolism , Anti-Ulcer Agents/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Ethanol/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Plant Extracts/metabolism , Amino Acids/metabolism , Gastric Mucosa/metabolism
8.
Biol Trace Elem Res ; 202(5): 2124-2132, 2024 May.
Article En | MEDLINE | ID: mdl-37606879

Oxidative stress and inflammation have pivotal roles in gastric ulcer development caused by alcohol consumption. Trace element boric acid taken into the human and animal body from dietary sources displays strong antioxidant and anti-inflammatory functions. However, the mechanisms underlying these actions of boric acid remain unclear, and its effectiveness in preventing gastric lesions is unknown. Therefore, the present study was undertaken to evaluate the protective effects of boric acid in alcohol-induced gastric ulcer and elucidate its potential mechanisms. Gastric ulcer was induced by 75% oral ethanol administration in rats, and the effectiveness of prophylactic boric acid treatment at 100 mg/kg concentration was assessed by histopathological examination, ELISA assay and qRT-PCR. Gross macroscopic and histopathological evaluations revealed that boric acid alleviated gastric mucosal lesions. Boric acid decreased reactive oxygen species (ROS) and malondialdehyde (MDA) concentration and the overall oxidation state of the body while improving antioxidant status. It reduced the concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mRNA expression of JAK2 and STAT3 was decreased while the expression of AMPK was increased with boric acid pretreatment. Moreover, Sema3A and PlexinA1 levels were elevated upon boric acid pretreatment, and homocysteine levels were reduced. Our results demonstrated that boric acid protects gastric mucosa from ethanol-induced damage by regulating oxidative and inflammatory responses. In addition, our findings suggested that the gastroprotective activity of boric acid could be attributed to its regulatory function in the IL-6/JAK2/STAT3 signaling modulated by AMPK and that Sema3A/PlxnA1 axis and homocysteine are potentially involved in this process.


Anti-Ulcer Agents , Boric Acids , Stomach Ulcer , Humans , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Antioxidants/metabolism , Interleukin-6/metabolism , AMP-Activated Protein Kinases , Semaphorin-3A/metabolism , Semaphorin-3A/pharmacology , Semaphorin-3A/therapeutic use , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Oxidative Stress , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Gastric Mucosa , Ethanol/adverse effects , Signal Transduction , Homocysteine/metabolism
9.
J Ethnopharmacol ; 321: 117542, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38056537

ETHNOPHARMACOLOGICAL IMPORTANCE: Uncaria tomentosa Willd. DC., is used in the Amazonian region of South America, wherein ethnic groups use the plant to treat diseases, including gastric disorders. However, despite its widespread popular use, this species has yet to be assessed for its anti-ulcer effects. AIM OF THE STUDY: In this study, we aimed to evaluate the in vivo gastroprotective and gastric healing activities of an aqueous extract of the bark of Uncaria tomentosa (AEUt) and sought to gain an understanding of the pharmacological mechanisms underlying these biological effects. MATERIALS AND METHODS: To verify the gastroprotective properties rats were treated with AEUt (30, 60, or 120 mg/kg) prior to inducing gastric ulceration with ethanol or piroxicam. Additionally, the involvement of nitric oxide, non-protein sulfhydryl compounds (NP-SH), α-2 adrenergic receptors, and prostaglandins was investigated. Furthermore, a pylorus ligature model was employed to investigate the antisecretory activity of AEUt. The gastric healing effects of AEUt (60 mg/kg) were examined in rats in which ulceration had been induced with 80% acetic acid, whereas the quality of healing was evaluated in mice with interleukin-induced recurrent ulcers. We also evaluated the in vivo thickness of the gastric wall using ultrasonography. Moreover, the levels of reduced glutathione (GSH) and malondialdehyde (MDA) were evaluated in ulcerated mucosa, and we determined the activities of the enzymes myeloperoxidase (MPO), N-acetyl-ß-D-glycosaminidase, superoxide dismutase, catalase, and glutathione S-transferase. In addition, we assessed the effects of AEUt on cell viability and subjected the AEUt to phytochemical analyses. RESULTS: Administration of the AEUt (60 or 120 mg/kg) prevented ethanol- and piroxicam-induced ulceration, which was also confirmed histologically. Moreover, we observed that pre-treatment with NEM and indomethacin abolished the gastroprotective effects of AEUt, thereby indicating the involvement of NP-SH and prostaglandins in these protective effects. In addition, we found that the administration of AEUt had no appreciable effects on the volume, acidity, or peptic activity of gastric juice. Furthermore, the AEUt (60 mg/kg) accelerated the gastric healing of acetic acid-induced ulcers by 46.2% and ultrasonographic findings revealed a reduction in the gastric wall thickness in this group. The gastric healing effect of AEUt was also accompanied by a reduction in MPO activity. The AEUt (60 mg/kg) also minimized ulcer recurrence in mice exposed to IL-1ß and was associated with the maintenance of GSH levels and a reduction in MDA contents. We deduce that the biological effects of AEUt could be associated with the activities of polyphenols and the alkaloids isomitraphylline and mitraphylline, identified as predominant constituents of the AEUt. Furthermore, we found no evidence to indicate that AEUt would have any cytotoxic effects. CONCLUSION: Collectively, our findings provide compelling evidence indicating the therapeutic efficacy of U. tomentosa. Our data indicate that compounds in AEUt confer gastroprotection and that this preventive effect of AEUt was accompanied by gastric healing and a reduction in gastric ulcer recurrence. Moreover, we provide evidence to indicate that the gastroprotective and gastric healing effects involve the antioxidant system and anti-inflammatory responses that contribute to preserving the gastric mucosa.


Anti-Ulcer Agents , Cat's Claw , Plants, Medicinal , Stomach Ulcer , Rats , Mice , Animals , Piroxicam/adverse effects , Phytotherapy , Ulcer/drug therapy , Plant Bark , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Gastric Mucosa , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ethanol/pharmacology , Acetates/pharmacology , Prostaglandins
10.
Phytomedicine ; 123: 155236, 2024 Jan.
Article En | MEDLINE | ID: mdl-38016383

BACKGROUND: Amauroderma rugosum (Blume & T. Nees) Torrend (Ganodermataceae) is an edible mushroom with a wide range of medicinal values. Our previous publication demonstrated the therapeutic effects of the water extract of A. rugosum (WEA) against gastric ulcers. However, the protective effects of the ethanol extract of A. rugosum (EEA) on gastric mucosa and its major active constituents have not yet been elucidated. PURPOSE: This study aims to evaluate the gastroprotective effects and underlying mechanisms of EEA and its fat-soluble constituent, ergosterol, in acute gastric ulcers. STUDY DESIGN AND METHOD: SD rats were pre-treated with EEA (50, 100, and 200 mg/kg) or ergosterol (5, 10, and 20 mg/kg), and acute gastric ulcer models were constructed using ethanol, gastric mucus secretion inhibitor (indomethacin) or pyloric-ligation. The gastric ulcer area, histological structure alterations (H&E staining), and mucus secretion (AB-PAS staining) were recorded. Additionally, Q-PCR, western blotting, immunohistochemistry, ELISA, molecular docking, molecular dynamics simulations, MM-GBSA analysis, and surface plasmon resonance assay (SPR) were used to investigate the underlying mechanisms of the gastroprotective effect. RESULT: Compared with WEA, which primarily exerts its anti-ulcer effects by inhibiting inflammation, EEA containing fat-soluble molecules showed more potent gastroprotective effect through the promotion of gastric mucus secretion, as the anti-ulcer activity was partly blocked by indomethacin. Meanwhile, EEA exhibited anti-inflammatory effects by suppressing the production of IL-6, IL-1ß, TNF-α, and NO, thereby inhibiting the MAPK pathway. Significantly, ergosterol (20 mg/kg), the bioactive water-insoluble compound in EEA, exhibited a gastroprotective effect comparable to that of lansoprazole (30 mg/kg). The promotion of gastric mucus secretion contributed to the effects of ergosterol, as indomethacin can completely block it. The upregulations of COX1-PGE2 and C-fos, an activator protein 1 (AP-1) transcription factor, were observed after the ergosterol treatment. Ergosterol acted as an LXRß agonist via van der Waals binding and stabilizing the LXRß protein without compromising its flexibility, thereby inducing the upregulation of AP-1 and COX-1. CONCLUSION: EEA and its primary bioactive compound, ergosterol, exert anti-ulcer effects by promoting gastric mucus secretion through the LXRß/C-fos/COX-1/PGE2 pathway.


Anti-Ulcer Agents , Polyporaceae , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Ethanol/pharmacology , Rats, Wistar , Dinoprostone/metabolism , Molecular Docking Simulation , Transcription Factor AP-1/metabolism , Rats, Sprague-Dawley , Indomethacin/pharmacology , Mucus , Plant Extracts/chemistry , Gastric Mucosa , Water , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use
11.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article En | MEDLINE | ID: mdl-38139257

Gastric ulcers are often exacerbated by factors such as nonsteroidal anti-inflammatory drugs (NSAIDs) and inflammation, and they have a substantial impact on a significant portion of the population. Notably, indomethacin is recognized as a prominent contributor to ulcers. This study investigated this potential method, with normalization to the anti-inflammatory and antiulcer properties of deep-sea water (DSW)-derived mineral water, using an indomethacin-induced gastric ulcer model in rats. The study involved four groups (n = 6 rats/group): normal control group (CON), indomethacin-only group (IND), indomethacin with trace mineral water group (TM), and indomethacin with high magnesium low sodium water group (HMLS). For three weeks, the CON and IND groups consumed tap water, while the TM and HMLS groups had access to mineral water. Gastric ulcers were induced on the final day using indomethacin, for all groups except the CON group. The results demonstrated that HMLS intake significantly improved gastric mucosal damage, preserved mucin stability, and increased gastric thickness, indicating its potential to prevent and alleviate indomethacin-induced gastric ulcers. Furthermore, HMLS consumption led to the upregulation of key genes associated with inflammation and a reduction in inflammatory cytokines. These findings suggest that DSW-derived mineral water, and particularly its high Mg2+ content, may offer promising health benefits including anti-inflammatory and anti-ulcer properties.


Anti-Ulcer Agents , Mineral Waters , Stomach Ulcer , Rats , Animals , Indomethacin/pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents/adverse effects , Gastric Mucosa , Seawater , Inflammation/drug therapy
12.
J Med Food ; 26(11): 777-798, 2023 Nov.
Article En | MEDLINE | ID: mdl-37902784

The aim of this study was to systematically review the scientific literature, with Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) guidelines, of the articles found in the past 11 years on the gastroprotective role of fruit extracts in gastric ulcers induced by non-steroidal anti-inflammatory drugs (NSAIDs). Scientific articles published between 2010 and 2020 were included in this systematic review, including in vitro and in vivo models, to define the gastroprotective role of fruit extracts. Studies were selected by Rayyan using PubMed, Web of Science, Scopus, and Science Direct databases. The keywords for the search strategy were: "gastric injury," "gastric ulcer," "fruit," "indomethacin," and "aspirin." Twenty-two articles with animal models of gastric ulcers were included. The NSAIDs used were aspirin and indomethacin. To know the damage caused by these, the ulceration index and biomarkers, such as aggressive/defensive factors involved in the gastric ulceration process, were measured. Most studies have shown that fruit extracts have antiulcer activity, with the most abundant metabolites being flavonoids, followed by terpenes and alkaloids. Possible antiulcer activities such as antioxidant, cytoprotective, gastric acid antisecretory, anti-inflammatory, or angiogenesis stimulant were declared, manifested mainly as a reduction of lipid peroxidation products, an increase in antioxidant enzymes and prostaglandins, and by the formation of a protective film through protein precipitation in the ulcer area. This systematic review demonstrates the importance of fruit extracts as gastric protectors.


Anti-Ulcer Agents , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Antioxidants/metabolism , Fruit/metabolism , Gastric Mucosa/metabolism , Plant Extracts/therapeutic use , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Indomethacin/adverse effects , Aspirin/adverse effects , Aspirin/metabolism
13.
Mol Biol Rep ; 50(11): 9085-9098, 2023 Nov.
Article En | MEDLINE | ID: mdl-37741810

BACKGROUND: A gastric ulcer is a painful lesion of the gastric mucosa that can be debilitating or even fatal. The effectiveness of several plant extracts in the therapy of this illness has been demonstrated in traditional pharmacopoeias. AIM: this study was aimed to see if propolis, ginseng in normal or nano form, and amygdalin might help in preventing the ulcerative effects of absolute ethanol. METHODS: Gastroprotective properties of pretreatments before ethanol gavage in rats were compared to omeprazole. The ulcer and stomach parameters (ulcerated regions) were measured (mm2), ulcer inhibition percentage, the stomachs were assessed macroscopically with gastric biopsy histological examinations. RESULTS: Amygdalin, normal and nano ginseng, nano propolis followed by propolis all showed great efficacy in protecting the cyto-architecture and function of the gastric mucosa. The number of ulcerated sites was greatly reduced, and the percentage of stomach protection was increased. Histopathological examination had confirmed great protective effects of the nanoformulations followed by amygdalin. The protection and healing rate was completed to about 100% in all tested materials while ulcer areas were still partially unhealed in normal propolis and omeprazole. Quantitative assay of the m-RNA levels Enothelin 1(ET-1), leukotriene4 (LT-4), and caspase 3(Cas-3) genes and Histamine were done and revealed significant up-regulations in ethanol group and the maximum protective effect was reported with ginseng nano, moreover the histamine content was significantly decreased with nano- formulated extracts. CONCLUSION: Amygdalin and the nanoformulated ginseng and propolis had exhibited a marked protective effect against the ulcerative toxic effects of ethanol.


Amygdalin , Anti-Ulcer Agents , Propolis , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Ulcer/drug therapy , Ulcer/pathology , Propolis/pharmacology , Amygdalin/pharmacology , Histamine/pharmacology , Histamine/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Gastric Mucosa , Omeprazole/pharmacology , Ethanol/adverse effects
14.
Int J Biol Macromol ; 253(Pt 2): 126795, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37689304

Dicranopteris linearis (DL) is a fern in the Gleicheniaceae family, locally known as resam by the Malay community. It has numerous pharmacological benefits, with antiulcer and gastroprotective properties. Peptic ulcer is a chronic and recurring disease that significantly impacts morbidity and mortality, affecting nearly 20 % of the world's population. Despite the effectiveness of peptic ulcer drugs, there is no perfect treatment for the ailment. Encapsulation is an advanced technique that can treat peptic ulcers by incorporating natural sources. This work aims to encapsulate DL extract using different types of cellulose particles by the solvent displacement technique for peptic ulcer medication. The extract was encapsulated using methyl cellulose (MC), ethyl cellulose (EC), and a blend of ethyl methyl cellulose through a dialysis cellulose membrane tube and freeze-dried to yield a suspension of the encapsulated DL extracts. The microencapsulated methyl cellulose chloroform extract (MCCH) has a considerably greater level of total phenolic (84.53 ± 6.44 mg GAE/g), total flavonoid (84.53 ± 0.54 mg GAE/g), and antioxidant activity (86.40 ± 0.63 %). MCCH has the highest percentage of antimicrobial activity against Escherichia coli (2.42 ± 107 × 0.70 CFU/mL), Bacillus subtilis (5.21 ± 107 × 0.90 CFU/mL), and Shigella flexneri (1.25 ± 107 × 0.66 CFU/mL), as well as the highest urease inhibitory activity (50.0 ± 0.21 %). The MCCH particle size was estimated to be 3.347 ± 0.078 µm in diameter. It has been proven that DL elements were successfully encapsulated in the methyl cellulose polymer in the presence of calcium (Ca). Fourier transform infrared (FTIR) analysis indicated significant results, where the peak belonging to the CO stretch of the carbonyl groups of methyl cellulose (MC) shifted from 1638.46 cm-1 in the spectrum of pure MC to 1639.10 cm-1 in the spectrum of the MCCH extract. The shift in the wavenumbers was due to the interactions between the phytochemicals in the chloroform extract and the MC matrix in the microcapsules. Dissolution studies in simulated gastric fluid (SGF) and model fitting of encapsulated chloroform extracts showed that MCCH has the highest EC50 of 6.73 ± 0.27 mg/mL with R2 = 0.971 fitted by the Korsmeyer-Peppas model, indicating diffusion as the mechanism of release.


Anti-Ulcer Agents , Peptic Ulcer , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chloroform , Renal Dialysis , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/chemistry , Cellulose/chemistry , Methylcellulose
15.
Pak J Pharm Sci ; 36(3): 819-827, 2023 May.
Article En | MEDLINE | ID: mdl-37580931

Gastric ulcer is a common gastrointestinal disease caused by excessive gastric acid secretion, which has been recognized as one of the most common causes of morbidity and mortality in the world. The skin of Rana chensinensis is rich in collagen and many previous studies have shown that it has certain bioactivity. Therefore, we extracted and purified collagen with a molecular weight less than 10000 Da from the skin of Rana chensinensis, and studied its gastric protective mechanism through the model of ethanol-induced gastric ulcer in Balb/c mice. The results showed that through macroscopic observation and significantly reduced ulcer index, it was proved that PCRCS could protect gastric mucosa and alleviate the damage of ethanol to gastric mucosa. PCRCS reduced ethanol-induced oxidative stress by boosting depleted SOD levels and dramatically lowering MDA levels, as well as significantly reducing lipid peroxidation. Additionally PCRCS (Protein Chinese Rana chesinensis Skin) additionally decreased the launch of inflammatory mediators TNF-α and IL-6 and more desirable the content material of protective elements NO and PGE2 in gastric mucosa. Based on these findings, we believe that PCRCS has potential stomach protective effects on ethanol-induced gastric ulcer, which may be achieved by inhibiting oxidative stress and stomach inflammation.


Anti-Ulcer Agents , Gastric Mucosa , Ranidae , Stomach Ulcer , Animals , Mice , Anti-Ulcer Agents/adverse effects , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Collagen/pharmacology , Ethanol/toxicity , Gastric Mucosa/drug effects , Mice, Inbred BALB C , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Protective Agents/adverse effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , China , Disease Models, Animal , Skin
16.
Drug Res (Stuttg) ; 73(8): 448-458, 2023 Oct.
Article En | MEDLINE | ID: mdl-37625445

BACKGROUND: Hymenocardia acida (HA) is one of the numerous medicinal plants in Nigeria with ethnomedicinal history of usage in the treatment of ulcer. The study aimed at isolating antiulcer principle(s) from the stem bark of HA as well as the mechanism of action determination. METHODS: Antiulcer screenings of the crude extract, aqueous fraction, and bulked VLC fractions were performed using in vivo and in vitro models. Docking was carried out by using PyRx. RESULTS: Crude extract (HA; 1 mg/mL) and the aqueous fraction of H. acida (HAA; 1 mg/mL) showed an acid neutralizing capacity (MEq) of 0.3948 and 0.4035, respectively which is significantly different from 0.431 MEq showed by negative control (distilled water) at p<0.05. BVLC 3 (1 mg/mL) showed a significant value of 0.4049 MEq. However, HA showed a dose-dependent decrease in activity across doses examined, with 100 mg/kg showing an ulcer index of 10.00±2.89 (61.50%) and cimetidine (positive control; 100 mg/kg), also showed the highest ulcer index of 3.67±0.88 (85.9%), which is significantly different from ulcer index of 26.00±6.35 (0.00%) p<0.05 observed in the negative control (5% dimethylsulphoxide). The highest ulcer index of 8.00±1.32 (65.10%) was noted in BVLC 3. Bioactive BVLC 3, resulted in an isolated compound (BF3B2A). The compound was suggested to be lupeol, with a docking score of -7.7. It showed a van der Waal interaction with some key amino acid residues in the vonoprazan binding site. CONCLUSION: The experimental studies justify the ethnomedicinal claim of usage among locals.


Anti-Ulcer Agents , Stomach Ulcer , Triterpenes , Rats , Animals , Plant Extracts/therapeutic use , Phytotherapy , Ulcer/drug therapy , Anti-Ulcer Agents/pharmacology , Triterpenes/pharmacology , Triterpenes/analysis , Triterpenes/therapeutic use , Rats, Wistar , H(+)-K(+)-Exchanging ATPase/analysis , H(+)-K(+)-Exchanging ATPase/metabolism , H(+)-K(+)-Exchanging ATPase/therapeutic use , Plant Bark/chemistry , Stomach Ulcer/drug therapy
17.
Cent Nerv Syst Agents Med Chem ; 23(1): 13-31, 2023.
Article En | MEDLINE | ID: mdl-37394979

OBJECTIVES: Elaeocarpus ganitrus, a member of the Eleocarpaceae family, is valued in Hinduism and Ayurveda, and is frequently used as a remedy for a variety of illnesses. The plant is reputed to treat a number of stomach issues. The purpose of the study was to produce high-quality scientific data regarding gastroprotective behavior, docking experiments with cholinergic receptors, and HPTLC (with lupeol and ursolic acid). To develop the mechanism of herbal extracts, in vitro anticholinergic and antihistaminic activities were evaluated. Different leaf extracts were treated with various reagents to determine the presence of various metabolites. An examination of the histopathology was conducted to determine the full impact of the extract. METHODS: Methanolic extract was chosen for HPTLC investigations after extraction with various solvents. A mobile phase of toluene, ethylacetate, and formic acid (8:2:0.1) was chosen. Molecular docking was utilized to examine how ursolic acid and lupeol are bound to cholinergic receptors (M3). Different extracts (aqueous and ethanolic) were tested for their ability to provide gastroprotection in Wistar rats at different doses (200 and 400 mg/kg). RESULTS: Phytochemical analysis of different extracts showed the presence of different primary and secondary metabolites. HPTLC data showed the presence of both standards. Docking studies exhibited very good interactions with the M3 receptor. Pharmacological studies revealed that extract-treated groups significantly reduced the ulcer index in all of the models mentioned above. The histopathological analysis clearly supports the biochemical studies, which were conducted utilizing various doses and found to be effective in a dose-dependent manner. The in vitro analysis proved that the abovementioned extracts may act as antagonists of acetylcholine and histamine. CONCLUSION: The data obtained would be valuable for the production of the monograph of the plant and conducting concept-related clinical studies in the future. More investigation is required since the gathered scientific data may lead to new research opportunities.


Anti-Ulcer Agents , Elaeocarpaceae , Stomach Ulcer , Rats , Animals , Rats, Wistar , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Molecular Docking Simulation , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Ursolic Acid
18.
Chem Biol Interact ; 382: 110649, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37499997

Gastric ulcer is a serious disease that affects millions of individuals worldwide. Alcohol consumption is a major contributor to the disease pathogenesis and ethanol-induced ulcer in rats closely recapitulates the clinical pathology of ulcer. In this study, rats were pretreated with carvacrol (CAR,50 and 100 mg/kg, orally) 1 h before absolute ethanol administration to induce gastric ulcer. CAR prevented ethanol-induced increases in gastric volume and acidity while restored mucin content. The gastro-protective activity of CAR, particularly the higher dose (100 mg/kg), was further supported by histopathological examination, as manifested by reduced gastric lesions. Interestingly, oxidative stress is linked to early stages of ulcer development and progression. In this study, ethanol administration upregulated the levels of ROS-producing enzymes, NADPH oxidase homologs 1 and 4 (Nox1 and Nox4) and lipid peroxides while depleting the antioxidant defense mechanisms, including GSH, Glutathione Peroxidase (GPX) and catalase. Interestingly, these alterations were significantly ameliorated by CAR pretreatment. Additionally, CAR possesses anti-inflammatory and anti-apoptotic activities. Pretreatment with CAR blunted ethanol-induced increases in inflammatory cytokines (NF-κB and TNF-α) and rectified the apoptosis regulator (Bax/Bcl2 ratio) in gastric tissue. Moreover, the docking simulation of CAR illustrated good fitting and interactions with GPX, Nox1 and TNF-α through the formation of hydrogen and hydrophobic (pi-H) bonds with conservative amino acids, thus, further supporting the anti-inflammatory and antioxidant effects underlying the gastroprotective effects of CAR. In conclusion, this study elucidates, using in silico and in vivo models, that the gastroprotective activity of CAR is attributed, at least in part, to its mucin-secretagogue, antioxidative, anti-inflammatory, and anti-apoptotic mechanisms.


Anti-Ulcer Agents , Stomach Ulcer , Rats , Animals , Antioxidants/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Tumor Necrosis Factor-alpha/metabolism , Ulcer/drug therapy , Ulcer/metabolism , Ulcer/pathology , Anti-Inflammatory Agents/adverse effects , Oxidative Stress , Anti-Ulcer Agents/pharmacology , Glutathione Peroxidase/metabolism , Ethanol/metabolism , Mucins/metabolism , Mucins/pharmacology , Mucins/therapeutic use , Gastric Mucosa
19.
Inflammopharmacology ; 31(5): 2631-2640, 2023 Oct.
Article En | MEDLINE | ID: mdl-37420144

Licania rigida Benth., a Brazilian endemic plant, has been traditionally used for treating inflammation and stomach pain. This work investigates the anti-inflammatory and gastroprotective activities of the ethanolic extract from L. rigida seeds (EELr) by in vitro and in vivo methods. The phytochemical profile was determined and the in vitro antioxidant activity was investigated by radical scavenging and thiobarbituric acid reactive substances methods. The ovalbumin denaturation method was used with sodium diclofenac as standard for the in vitro anti-inflammatory activity assessment. Acetylsalicylic acid was used to induce gastric ulcers in male mice and then to evaluate the preventive and therapeutic gastroprotective effect of EELr, using omeprazole as the reference drug. The extract exhibited relevant amount of phenolic compounds and flavonoids, in particular, demonstrating in vitro antioxidant capacity. EELr was able to inhibit almost 60% of ovalbumin denaturation at a concentration considered low. It also prevented the decrease of biochemical markers for oxidative stress such as superoxide dismutase (SOD) and reduced glutathione (GSH) in the stomach and SOD and catalase (CAT) in the liver. EELr also significantly decreased the number of lesions as well as reduced the ulcerated area when used as therapy. The observed effect may be due to its phenolic compounds, such as chlorogenic acid, caffeic acid and tannins, as previously reported. EELr is a potential source of compounds with anti-inflammatory activity, protects the liver from oxidative damage and improves healing of aspirin-induced ulcers. This work contributes to the knowledge of L. rigida species.


Anti-Ulcer Agents , Chrysobalanaceae , Stomach Ulcer , Rats , Mice , Animals , Plant Extracts/therapeutic use , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Phytotherapy , Chrysobalanaceae/chemistry , Ovalbumin/pharmacology , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Ethanol/chemistry , Aspirin/pharmacology , Seeds , Superoxide Dismutase , Gastric Mucosa
20.
J Complement Integr Med ; 20(4): 729-739, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37382892

OBJECTIVES: In this study, we determined the gastroprotective and ulcer-healing effects of extracts (aqueous and methanolic) of Nauclea pobeguinii stem-back. METHODS: Gastroprotective and healing activity were evaluated following a HCl/ethanol and an indomethacin-induced acute ulcers models; acetic acid, pylorus-ligature, pylorus ligature/histamine and pylorus ligature/acetylcholine-induced chronic ulcers models. RESULTS: It emerges from this study that, at 100, 200 and 400 mg/kg, the extracts significantly reduced the various ulceration parameters. Compared to negative control male rats, the aqueous (100 mg/kg) and methanolic (400 mg/kg) extracts of Nauclea pobeguinii inhibited the ulcers induced by HCl/ethanol by 80.76 % and 100 % respectively, as well as ulcers induced by indomethacin by 88.28 % and 93.47 % respectively. Animals that received 200 mg/kg of both extracts showed a significant reduction in the levels of monocytes, lymphocytes, nitric oxide, MDA and a significant increase in the activities of SOD and catalase. Histological analysis showed repaired mucous epithelium at all doses of both extracts. Aqueous and methanol extracts inhibited ulceration indices by 89.33 % and 88.53 % for pylorus ligature, 83.81 % and 61.07 % for pylorus ligature/acetylcholine and 87.29 % and 99.63 % for pylorus ligature/histamine respectively. Both extracts protected the stomach lining with percentages inhibition of 79.49 % and 81.73 %, respectively in the ethanol test. The extracts induced a significant increase in mucus mass (p<0.001). CONCLUSIONS: The aqueous and methanol extracts of Nauclea pobeguinii healed ulcers thanks to their anti-inflammatory, anti-oxidant, anti-secretory and cytoprotective properties.


Anti-Ulcer Agents , Rubiaceae , Stomach Ulcer , Rats , Male , Animals , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Ulcer/pathology , Plant Extracts/adverse effects , Phytotherapy , Methanol/pharmacology , Acetylcholine/adverse effects , Histamine/adverse effects , Indomethacin/therapeutic use , Pylorus , Ethanol/pharmacology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Gastric Mucosa
...